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Resumo 
O presente artigo desenvolve um algoritmo de análise de estabilidade através da junção das técnicas de 
simulação de Monte Carlo, Gauss-Seidel/Newton e Filtros de Variação. Para a comparação de resultados, 
utiliza-se tanto o algoritmo desenvolvido como uma solução numérico-analítica para o modelo Benchmark de 
Dos Santos e Zezza (2008).  Os resultados mostram que há uma sobreposição entre os dois métodos de análise. 
Tendo em vista que nem sempre é possível ou viável a análise da estabilidade do sistema através de uma solução 
analítica, o algoritmo apresentado inova ao fornecer uma rota de fuga para o mapeamento de parâmetros 
estáveis em modelos dinâmicos SFC.  
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Abstract 
This article describes the development of a stability analysis algorithm through a combination of Monte Carlo 
Simulation, Gauss-Seidel/Newton and Variation Filter techniques. In order to compare results, both the new 
algorithm and a numerical-analytical solution are tested against the Dos Santos and Zezza (2008) benchmark 
model. The outcome demonstrates overlap between the results from the two approaches. Considering that it 
is not always possible or feasible to analyze a system’s stability through an analytical solution, our algorithm  
innovates by providing an escape route for mapping stable parameters. 
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1. Introduction 

In the Stock Flow Consistent (SFC) literature, the usual treatment to solve models is 

to seek a numerical solution to the set of parameters under analysis. In general, these dynamic 

models can be understood as linear n×n systems, where the current variables are functions 

of other current and lagged variables. 

According to a survey conducted by Caverzasi and Godin (2014), which looked at 

the current state of the literature regarding post-Keynesian Stock-Flow Consistent modelling 

(PK-SFC), there are two ways to solve a dynamic economic model: numerically and 

analytically. The authors also point out that it is possible to solve a model deductively, but 

this is not considered a proper approach. 

Solving a model numerically involves dealing with the following fundamental 

questions: (i) how to determine the parameter values and the initial value of the endogenous 

variables; and (ii) how to use the simulation results. 

The first question can be answered through one of two methodologies: (a) estimation 

or (b) calibration. Estimation is the use of a statistical/econometric methodology to 

determine the parameter values to be used in the model. Calibration, for its part, is the 

process of determining the parameter and initial stock values using stylized facts or rules of 

thumb. 

The problems that arise from the first methodology relate to the implicit assumption 

that the parameters are constant over time, which opens the door to the Lucas Critique 

(1976)1, although shocks are applied to the model to analyze its general behavior. 

The problems related to the second methodology involve questions about the correct 

way to use it. Two approaches may be found in the literature. The first involves letting the 

model start from a steady state and then applying a shock. In the second, a base-scenario is 

drawn with no restriction to convergence to the steady state; from this scenario certain 

parameters are modified, and the behavior of the model is observed. 

 
1 In particular, the Lucas Critique (LC) is directed at models that utilize the aggregate behavior of agents without 
micro-foundations. The problem Lucas outlined is that agents should change their behavior when they change 
policies and, ultimately, this will affect the set of parameters used in a simulation of aggregated macrodynamic 
models, which cease to be constant over time. A recent response to the LC in terms of SFC modeling is the 
incorporation of micro-foundations using the agent-based approach (Agent-Based Models), rather than 
representative agents, who make choices via intertemporal optimization. A more detailed discussion can be 
seen in Caiani et al. (2016). 
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The algorithm developed in this article applies the calibration methodology, 

following an approach in which there is convergence to the steady state. The alternative here 

involves mapping the desired (or plausible) intervals for the model’s endogenous variables 

and based on these conditions, the attainment of the parameters that will lead the model to 

this outcome. 

According to O’Shea and Kinsella (2010), there is an algorithm for numerical 

calculation that facilitates the resolution of such models, regardless of their size. This 

algorithm consists of solving the system for each period t using the Gauss-Seidel method 

and inputting into it, as the best initial guess, the values solved in the last period, t-1, for 

resolution in the current period, t. In this sense, econometric software, such as Eviews, and 

programming languages, such as R and Python, already contain a routine that includes this 

algorithm2. Most of the studies conducted so far use this kind of software to solve their 

proposed models. 

However, calibrating models so that they work well can be an arduous task, since 

many parameters are difficult to obtain through econometrics (due to a lack of data or a 

difficulty of estimation) or from previous works. One of the criticisms of SFC models, 

therefore, is that they do not provide us with general behavior, but rather with behavior 

specific to the set of parameters used in their calibration. 

Authors such as Godin et al. (2012) have already made efforts to develop and provide 

escape routes for authors who wish to make parameter estimations using the linear 

programming method. However, this remains an open research agenda within this literature. 

Throughout sections 2 and 3 of this paper, we therefore present, in the form of a 

“cookbook”, an analytical approach to solving SFC models in discrete time and to assessing 

their stability in the steady state. Following this, in section 4, we present the algorithms of 

numerical calculation that help solve these models, generating numerical-analytical answers 

for both solutions and stability. We call this method M1. In section 5, we present a new, 

alternative algorithm, which makes it possible to calibrate SFC models by mapping their 

stability and their economic viability parameters. We call this method M2. Finally, in section 

6, we apply M1 and M2 to the “benchmark” model in the literature, demonstrating the 

convergence of results. Finally, in section 7, we outline our conclusions. 

 
2 Examples of model simulation routines from the book by Godley and Lavoie (2007) can be found at: 
http://models.sfc-models.net/.  
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2. Stability in Stock-Flow Consistent Models (SFC) 

The SFC literature has predominantly used discrete-time (difference equation) rather 

than continuous-time (differential equation) models. Although relevant models are being 

developed in continuous time, the stability issue discussed in this article is only concerned 

with discrete-time ones. The reason for this is simple. The literature on continuous time has 

been widely developed and disseminated in works of applied economics, such as Gandolfo 

(2009) and Shone (2002). Sections 2 and 3 below were developed in line with Elaydi (2005), 

Gandolfo (2009), Viana (2012), and Ruggiero and Lopes (1996). 

2.1. Stability Analysis in Difference Equations 

The presentation of the stability analysis in the difference equations section is divided 

as follows: linear multidimensional systems; and fixed points and stability in linear systems. 

2.1.1. Linear Multidimensional Systems 

A linear multidimensional system can be described as follows. There are N discrete 

dynamic variables with i=1,2,…,N. Time is also a discrete variable thus: t=0,1,2,…,T. We 

therefore have variables 𝑥1𝑡, 𝑥2𝑡,… , 𝑥𝑁𝑡 which can be described in the following general 

way: 

x1t = F1(x1t−1, x2t−1,… , xNt−1)
x2t = F2(x1t−1, x2t−1,… , xNt−1)

⋮
xNt = FN(x1t−1, x2t−1,… , xNt−1)

    (1) 

where Fi, i=1,2, … ,N are, in principle, functions of all the variables3. In matrix notation, we 

can define the following N×1 column matrices at time t. Thus: 

vt = (

x1t
x2t
⋮
xNt

)    e   F(vt) = (

F1(vt)
F2(vt)
⋮

FN(vt)

)                   (2) 

where vt is a matrix of the 𝑛 variables at period t and F(vt) is a column matrix containing 

their respective functions. Taking the two matrices from equation (2), the general 

multidimensional model can be described as follows: 

 
3 In fact, the discrete-time system for SFC models can still take into account the relationships between variables 
in current time. However, the explanation we provide in this section is simpler. 
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vt = F(vt−1)                (3) 

Since we are interested in the affine vector function, we have: 

F(vt) = A. vt + B            (4) 

where the A and B matrix can be defined as: 

A = (

A11 A12 ⋯ A1N
A21 A22 ⋯ A2N
⋮ ⋮ ⋱ ⋮
AN1 AN2 ⋯ ANN

) ,     B = (

B11
B21
B31
BN1

)   (5) 

So, the map can be described as follows: 

vt = A. vt−1 + B        (6) 

2.1.1.1.  Fixed Points and Stability in Linear Systems: 

We have the following fixed points vector (column matrix): 

v∗ = (

x1∗
x2∗
⋮
xN∗
)        (7) 

Fixed points can be obtained as follows, provided that the (I-A) matrix is not singular 

(that is, it has an inverse): 

v∗ = (I − A)−1. B            (8) 

The general solution of the N-dimensional model is given by: 

vt = At. [v0 − v∗] + v∗    (9) 

where 𝐯𝟎 is the vector of dynamic variables in period 𝑡 = 0. 

It is possible to translate the stability of the fixed point to the origin of the N-

dimensional space, that is, to the point with coordinates xi=0, where i=1,2 , …, N; making: 

wt ≡ vt − v∗     (10) 

which means that it can be written more simply (without the constant term), thus: 

wt = A.wt−1     (11) 

The stability of the fixed point at origin therefore depends on the Euclidean distance 

in the dynamic variables’ N-dimensional space which, in turn, is the Euclidean norm of the 

wt vector: 

||wt|| = √(w1)t2 + (w2)t2 +⋯+ (wN)t2   (12) 

where (𝑤𝑖)𝑡2 = 𝑥𝑖 − 𝑥𝑖∗, for i=1,2,…,N. The fixed point at the origin w∗ = 0 is 

asymptotically stable if, given initial condition w0, the subsequent iterations, At. w0, are such 
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that the distances from the origin approach zero when t→∞. Analogously, the origin will be 

unstable if the distance diverges to infinity when t→∞. Thus, determining the stability of the 

fixed point requires an analysis of the eigenvalues of matrix A. The square matrix 𝐴, (N×N), 

has eigenvalues ξ given by the roots of the secular equation, which are obtained by: 

det(A − ξ. I) = 0            (13) 

where I is the identity matrix of order 𝑁: 

I = (

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

)     (14) 

The secular equation is obtained by setting a determinant of order N to zero, that is: 

(

A11 − ξ A12 ⋯ A1n
A21 A22 − ξ ⋯ A2n
⋮ ⋮ ⋱ ⋮
An1 An2 ⋯ Ann − ξ

) = 0   (15) 

Thus, providing an algebraic equation of degree N in the form: 

𝑎0. 𝜉𝑛 + 𝑎1. 𝜉𝑛−1 + 𝑎𝑛−1. 𝜉 + 𝑎𝑛 = 0   (16) 

where ai, i=0,1,2,…,n-1 are coefficients dependent on the elements of matrix A. Of course, 

we can divide the whole equation by a0≠0, such that the coefficient of the first term can be 

taken as one, without loss of generality. 

In the fundamental algebra theorem, an algebraic equation of degree 𝑁 has 𝑁 roots, 

which can be real or complex. Therefore, matrix 𝐴 will always have 𝑁 eigenvalues, denoted 

𝜉𝑖  with i=1,2,…,N; as well as N associated eigenvectors ui, such that 

A. ui = ξi. ui      (17) 

In principle, to find the eigenvalues of matrix A, we have to solve (7). However, 

analytical solutions (using radicals) only exist for N≤4, while for N=3 such solutions are 

already quite complicated and hard to interpret4. In practice, explicit calculus requires 

numerical solutions.  One possible solution is to calculate the eigenvalues of the companion 

matrix. 

Generally speaking, there are some real roots and some complex ones, while certain 

real roots are also complex (multiple or degenerate), which, in general, makes the problem 

 
4 When 𝑁 = 2, we can use Bhaskara's formula to find the polynomial roots. When N=3, we can use Cardano's 
formula to find the roots, although the expression is much more complicated. When N≥4, we do not have an 
algebraic expression to find the polynomial roots. Numerical resolution methods therefore become necessary 
from N>3. 
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quite complicated. Alternative criteria, such as the Jury Criterion and/or the Schur Criterion, 

can be used to avoid calculating all the system’s eigenvalues. An explanation of these criteria 

is beyond the scope of this work, so we will only observe the following rules regarding the 

calculated eigenvalues: If the module of the calculated eigenvalues (complex or real) is less 

than one, the condition is sufficient for the fixed point to be considered stable. If at least one 

calculated eigenvalue has a value greater than unity in the module, the fixed point is unstable. 

2.1.2. Nonlinear Multidimensional Systems 

Our presentation of nonlinear multidimensional systems is divided as follows: fixed 

points and periodic orbits in nonlinear systems; stability in nonlinear models; hyperbolic 

points; and solving nonlinear systems using the Newton-Raphson method. 

2.1.2.1.  Fixed Points and Periodic Orbits in Nonlinear Systems 

In many cases, an analysis of linear models also allows us to determine the stability 

of fixed points in nonlinear models in the way we have done in equation (4), v𝑡 = F(v𝑡−1), 

presented above. 

The fixed point of a multidimensional model is a vector of N components that maps 

onto itself, as presented in equation (8), as follows: 

v∗ = F(v∗)     (18) 

Another concept applicable in more than one dimension is that of periodic orbits. 

The periodic orbit of period m, or the m-cycle, is a set of m vectors {v1∗, v2∗, v3∗,… , vm∗ }, such 

that one maps the other, cyclically. 

v𝑖+1∗ = F(v𝑖∗)            (𝑖 = 1,2,… ,𝑚 − 1)                              

 v1∗ = F(v𝑚∗ )     (19) 

Applying these successively to any of the vectors in the m-cycle, such as vm∗ , we have: 

v𝑚∗ = F(v𝑚−1∗ ) = F(F(v𝑚−2∗ )) = F (F(F(v𝑚−3∗ ))) = F[𝑚](v𝑚∗ )     (20) 

so that the elements of an 𝑚-cycle are fixed points of the 𝑚-𝑡ℎ iteration of the 𝐅(𝑥) model. 

2.1.2.2.       Stability in Nonlinear Models  

The fixed-point stability of the nonlinear multidimensional model vt+1 = F(vt)  is 

investigated by its linearization in the neighborhood of point 𝐯∗. We work in the 𝑁-
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dimensional plane of dynamic variables and around the fixed point, whose coordinates are 

(𝑥1∗,… , 𝑥𝑁∗ ), we analyze a hypersphere of radius ϵ, where 𝜖 ≪ 𝑥𝑖∗ is a small number 

(compared to unity). 

To linearize the model, and check whether the fixed point is stable within this 

neighborhood bounded by 𝜖, we expand the 𝑁 functions F𝑖(v) in series. We write the vector 

in the neighborhood of the fixed point as: 

  v𝑡 = v∗ + w𝑡                (21) 

wt = (

(w1)t
(w2)t
⋮

(wN)t

) = (

(x1)t − x1∗
(x2)t − x2∗

⋮
(xN)t − xN∗

)            (22) 

such that (19) becomes: 

(w1)t + x1∗ = F1((w1)t−1 + x1∗, (w2)t−1 + x2∗ , … , (wN)t−1 + xN∗ )
(w2)t + x2∗ = F2((w1)t−1 + x1∗, (w2)t−1 + x2∗, … , (wN)t−1 + xN∗ )

⋮         =       ⋮
(wN)t + xN∗ = FN((w1)t−1 + x1∗, (w2)t−1 + x2∗ ,… , (wN)t−1 + xN∗ )

 (23) 

 

Let's also assume that the increments (𝑤𝑖)𝑡 = (𝑥𝑖)𝑡 − 𝑥𝑖∗ are inside the hypersphere of 

radius ϵ: 

||(𝑥𝑖)𝑡 − 𝑥𝑖∗|| < 𝜖 ≪ 1          (24) 

Thus, we can expand each of the N components of the Fi vector function, in a power series 

of N, 𝑤𝑖  increments, with 𝑖 going from 1→N. Since ϵ is small enough, we can retain the 

linear terms and neglect all the others. The following set of coupled equations results from 

(25): 

(w1)t+1 = (w1)t. (
∂F1
∂x1
)
(𝐯∗)

+ (w2)t. (
∂F1
∂x2
)
(𝐯∗)

+ ⋯+ (wN)t. (
∂F1
∂xN
)
(𝐯∗)

+ ⋯

(w2)t+1 = (w1)t. (
∂F2
∂x1
)
(𝐯∗)

+ (w2)t. (
∂F2
∂x2
)
(𝐯∗)

+ ⋯+ (wN)t. (
∂F2
∂xN
)
(𝐯∗)

+ ⋯

⋮         =        ⋮
(wN)t+1 = (w1)t. (

∂FN
∂x1
)
(𝐯∗)

+ (w2)t. (
∂FN
∂x2
)
(𝐯∗)

+ ⋯+ (wN)t. (
∂FN
∂xN
)
(𝐯∗)

+ ⋯

 (25) 

 

where we can use (18) to eliminate the fixed points on both sides of the expressions. 

We have a total of N2 partial derivatives of functions Fi with respect to all dynamic variables 

xj, calculated at fixed point v∗. We define the Jacobian matrix as: 
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J(v∗) =

(

 
 
 
 
(∂F1
∂x1
)
(v∗)

(∂F1
∂x2
)
(v∗)

… (∂F1
∂xN
)
(v∗)

(∂F2
∂x1
)
(v∗)

(∂F2
∂x2
)
(v∗)

⋯ (∂F2
∂xN
)
(v∗)

⋮ ⋮ ⋮ ⋮
(∂FN
∂x1
)
(v∗)

(∂FN
∂x2
)
(v∗)

⋯ (∂FN
∂xN
)
(v∗))

 
 
 
 

   (26) 

such that (26) can be written in the compact form: 

w𝑡+1 = J(v∗). w𝑡    (27) 

which is a linear model in form (7), whose fixed point is the origin in 𝑁-dimensional space. 

Therefore, in order to study the stability of the nonlinear model’s fixed-point 𝐯∗, it is 

sufficient to investigate the stability of the origin for the linearized model (27), that is, to 

study the eigenvalues of the Jacobian matrix, whose elements are constant: 

𝐽𝑖𝑗(v∗) = (
𝜕𝐹𝑖
𝜕𝑥𝑗
)
(v∗)

    (28) 

The fixed-point v* will be stable if all the Jacobian matrix eigenvalues have modules less than 

one. Through the coefficients of the secular equation, satisfied by the Jacobian matrix, and 

through the Schur criterion, it is possible to determine the fixed-point stability conditions in 

the linear approximation. 

2.1.2.3. Hyperbolic Points 

Definition: A fixed point v∗ is hyperbolic (or non-degenerate) if all the eigenvalues of the system's Jacobian 

matrix calculated at that point,  J(v∗), have modules other than one. 

The fixed point v∗ will be non-hyperbolic if one or more eigenvalues have modules 

equal to one, that is, they are located precisely on the unit circle in the complex plane. There 

is a version of the Hartman-Grobman theorem5 for discrete models which ensures that, if 

v∗ is a hyperbolic fixed point, the behavior of the solutions in its neighborhood (and 

therefore its stability) is determined by linearization. If the fixed point is non-hyperbolic, the 

linearization criterion is not able to tell us whether or not the fixed point is stable, and other 

methods are required. 

 

 
5 This theorem can be found in the appendix. 
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2.1.3. The Numerical Solution of Nonlinear Systems using the Newton-

Raphson Method 

One of the problems with analyzing the stability of systems of nonlinear difference 

equations refers to the calculation of their fixed points. 

When we are dealing with a linear case, the calculation is straightforward, using 

equation (8) presented above (provided that the matrix is singular). However, this does not 

apply to the nonlinear case. One possible alternative to finding the roots in this case is by 

following the Newton-Raphson iterative method. 

In 𝑁-dimensions, according to Ruggiero and Lopes (1996), given a system of 

nonlinear equations: 

F:D ⊂ ℝn → ℝn,       F = (f1,… , fn)T   (29) 

The objective is to find solutions for F(x) = 0, or equally: 

𝑓1(𝑥1, 𝑥2,… , 𝑥𝑛) = 0
𝑓2(𝑥1, 𝑥2,… , 𝑥𝑛) = 0

⋮
𝑓𝑛(𝑥1, 𝑥2,… , 𝑥𝑛) = 0

           (30) 

using the following notation: 

x = (

𝑥1
𝑥2
⋮
𝑥𝑛

)     𝑒    F(x) = (

𝑓1(x)
𝑓2(x)
⋮

𝑓𝑛(x)

)           (31) 

Each function 𝑓𝑖(x) is a nonlinear function on x, 𝑓𝑖: ℝ𝑛 → ℝ𝑛,   𝑖 = 1, … , 𝑛 and 

therefore F(x)  is a nonlinear function on x, F:ℝ𝑛 → ℝ𝑛. We are assuming that F(x)  is 

defined on an open set D ⊂ ℝ𝑛 and that it has continuous derivatives on that set. 

Furthermore, we assume that there is at least one point x∗ ∈ D, such that F(x∗) = 0. 

Our objective, then, is to use an iterative method which, from starting point x(0), 

generates a sequence {x(𝑘)} of vectors and, in a convergence situation, we have: 

 lim
𝑘→∞

x(𝑘) = x∗           (32) 

In iterative methods, it is necessary to establish stopping criteria to accept whether 

point x(𝑘) is an exact approximation of x∗ or to detect divergence in the iterative process. 

Since F(x(k)) is a vector of ℝ𝑛, we confirm that: 

||F(x(k))|| < 𝜀       (33) 
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with |||| the vector norm and 𝜀 the tolerance. 

 That said, we have the following definition for the Newton-Raphson method: 

𝑓𝑖(𝑥) = 𝑓𝑖(𝑥(𝑘)) + ∇𝑓𝑖(𝑐𝑖)𝑇. (𝑥 − 𝑥(𝑘))   (34) 

where 𝑓𝑖 is a nonlinear function of the 𝐱 variables. ∇𝑓𝑖(𝑐𝑖)𝑇 is the gradient vector in 𝑐𝑖 

transposed. Approximating ∇𝑓𝑖(𝑐𝑖)𝑇 by ∇𝑓𝑖(𝑥(𝑘))
𝑇, 𝑖 = 1, … , 𝑛 we have a local linear 

model for 𝑓𝑖(𝑥)  around 𝑥(𝑘): 

𝑓𝑖(𝑥) ≈ 𝑓𝑖(𝑥(𝑘)) + ∇𝑓𝑖(𝑥(𝑘))
𝑇
. (𝑥 − 𝑥(𝑘)) , 𝑖 = 1, … , 𝑛      (35) 

the local linear model for 𝐹(𝑥) around 𝑥(𝑘) is therefore: 

𝐹(𝑥) ≈ 𝐿𝑘(𝑥) = 𝐹(𝑥(𝑘)) + 𝐽(𝑥(𝑘)). (𝑥 − 𝑥(𝑘))  (36) 

For the local linear model, the next approximation 𝑥(𝑘+1) will be the zero  

𝐿𝑘(𝑥) = 0 ⟺ 𝐽(𝑥(𝑘)). (𝑥 − 𝑥(𝑘)) = −𝐹(𝑥(𝑘))  (37) 

If we denote (𝑥 − 𝑥(𝑘)) by 𝑠(𝑘), we have 𝑥(𝑘+1) = 𝑥(𝑘) + 𝑠(𝑘), where 𝑠(𝑘) is the solution 

of the linear system: 

𝐽(𝑥(𝑘))𝑠 = −𝐹(𝑥(𝑘))    (38) 

Thus, computationally the method requires: 

1) An evaluation of the Jacobian matrix at point 𝑥(𝑘) and 𝐹(𝑥(𝑘)). 

2) If ||F(x(k))|| < 𝜀, stop. Otherwise: 

3) The resolution of the linear system 𝐽(𝑥(𝑘))𝑠 = −𝐹(𝑥(𝑘)) for the point. 

4) x(𝑘+1) = x(𝑘) + s(𝑘) 

3. Analytical-Numerical Stability Analysis 

In the two previous sections we presented the method for analyzing the stability of 

linear and nonlinear systems; we now propose a method that combines the aforementioned 

analysis with computational numerical methods. In order to analyze the stability of a 

nonlinear discrete model, we need to perform the following: 

1) Find the vector of fixed points. 

2) Use the Jacobian matrix at the fixed points vector. 

3) Analyze the eigenvalues of the found matrix. 

4) If all the absolute values from the eigenvalues are less than one, we have obtained a 

stable fixed point, otherwise we have an unstable one. 
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We will demonstrate these steps in the following section, using the consolidated 

model found in the SFC literature: “the Simplified 'Benchmark', Stock-Flow Consistent Post-

Keynesian Growth Model” by Dos Santos and Zezza (2008). The advantage of using this 

model is due to the following: it is a model for which the authors have already developed an 

analytical solution. The model has already been discussed in relation to sensitivity analysis 

methods [Ciuffo and Rosenbaum (2015)] and there is a convergence of analytical efforts in 

dialogue with it. 

4. An Alternative Algorithm for Stability Analysis 

In this section, we present an alternative approach to simulate and compare results 

with the analytical-numerical method for stability analysis. The usual method (M1), presented 

above, consists of finding the values for the fixed points from a system of difference 

equations, then calculating the Jacobian matrix at fixed points and the absolute values of the 

eigenvalues. Finally, through the general stability criterion, the eigenvalues module is used to 

define whether we are facing a stable or an unstable equilibrium. If this is a two-dimensional 

model, we can infer through the trace and determinant whether it is a stable fixed point, an 

unstable point, a saddle point, an unstable focus, or a stable focus. 

The alternative method (M2) described in this article consists of a combination of 

numerical approaches and makes use of Brute Force and Computational Ignorance (BFCI)6 

to demonstrate that there is convergence between the M1 and M2 results. 

First, a domain is defined for the set of parameters to be evaluated. Next, the Monte 

Carlo simulation method is used to randomly generate parameters uniformly distributed 

within this domain interval. At each simulation m, a set z of model parameters is generated. 

This is given by: {𝑎𝑖}𝑚, 𝑖 = 1,2,… , 𝑧. From this set, the Gauss-Seidel method7 is used to 

solve the system of equations for each period t, where 𝑡 = [1,2,… , 𝑛]. When t=n, the 

algorithm stop gives us the final set of endogenous variables {𝑦𝑡=𝑛𝑖 }, 𝑖 = 1,2,… , 𝑥. Note that 

x must be x≤z and the equations must be linearly independent. From the final endogenous 

variables, we can obtain the level values and their variations, Δ𝑦𝑡𝑖, 𝑖 = 1,2,… , 𝑥. 

 
6 BFCI is programming jargon which means relying on raw computing power. For example, an algorithm that 
uses BFCI might search through all possible options to find the single best option. 
7 According to O’Shea and Kinsella (2010), this method has been evaluated for linear SFC models. The 
sufficient condition for convergence is obtained when the matrix is strictly diagonally dominant.  
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Applying the criterion of having Δ𝑦𝑡𝑖 = 0 ∀ 𝑖 ∈ {1,2,… , 𝑥} in the steady state, a 

filter was created to select only those parameters for which the condition of Δ𝑦𝑡𝑖 = 0  was 

fulfilled. Note that by selecting ex ante a n value for the final period of calculated t, we could 

have endogenous variables that are on the path of convergence, but which still do not have 

a value equal to zero. Thus, an alternative way for the filter to be made flexible is to use 

Δyti<tolerated, with tolerated≈0. 

Figure 1, below, outlines the steps of the algorithm. As stated above, first, a random 

set of parameters is generated within a previously defined domain maintaining uniform 

distribution, as seen in Box 1. At the same time, other information is also applied, such as 

the values of the initial stocks and the exogenous parameters/variables to be held as fixed 

[Box 2]. Using the values provided by Box 1 and 2, the model is solved as a system of linear 

equations via Gauss-Seidel, or other methods (Jacobi or Newton Raphson, in nonlinear 

cases) for a given length 𝑡 [Box 3]. 

Next, we store the last values of the model state variables, as well as their temporal 

variations, Δ𝐘𝐭 [Box 4]. In this last row, cases where the temporal variations are smaller than 

the tolerance value are filtered. If the variation is greater than the tolerance value, we assume 

that there is no convergence and, therefore, discard the set of parameters. The same applies 

if convergence is accepted, but the value of the state variable does not make economic sense 

(wealth or negative GDP, for example) [Box 7]. 

However, if we accept the convergence criterion and if the final values of the state 

variables fall within a range of values that make economic sense, the parameter values are 

stored [Box 6]. Finally, we return to the initial step via looping and exhaustively test the 

results via Brute Force and Computational Ignorance. 

On the other hand, the alternative to the proposed algorithm (M2), which we call 

(M1), can be summarized as follows: First step, use only the generated parameter values to 

find the roots of the polynomial that determines the model’s fixed points. By determining its 

roots, we can apply matrix numerical calculus to evaluate the eigenvalues of the Jacobian 

matrix under the fixed points obtained. If the modulus is less than one, the parameter is 

considered stable and if it is greater, unstable. A practical programming of the two methods, 

in MATLAB, may be found in the appendix of this work. 
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Figure 1- Sketch of the alternative stability algorithm (M2) 

Source: Author’s own 

5. The Dos Santos and Zezza Benchmark (2008) 

Initially, the Benchmark model has 35 equations which, if solved simultaneously for 

a given set of parameters, provide the temporal dynamics of the system. However, the 

authors show that this model can be more easily analyzed if reduced to a smaller number of 

equations, that is, it is possible to generate the dynamics of the system using only four 

equations and calculate the other hidden variables8 during this reduction. 

First, a new equation was generated through the equations that constitute aggregate 

demand (Consumption, Investment and Public Expenditure), providing the dynamics of the 

productive capacity utilization curve, which is the same as a normalized IS curve. Secondly, 

other equations were normalized via inherited capital, which together provided the complete 

dynamics of the system. These were: public debt, inherited wealth, and investment. 

The equation system that gives the short-term dynamics are: 

gt = g0 + (α. π + β). ut − θ1. ilt    (S.1) 

bt =
[bt−1.(1+ibt−1)+γt−θ.ut]

(1+gt)
            (S.2) 

 
8 ‘Hidden’ in the sense that the variable has been simplified within other equations. It has not been removed or 
discarded. 
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vht =
[1−(1+τb).(1−μ)].ibt−1.bt−1+μ.(1−θ).π.ut+{(1−δ).[1+ibt−1.(1+τb).(1−μ)]−a}.vht−1

(1+gt−δ)
     (S.3) 

ut = ψ1. A(ilt) + ψ1. a. vht−1               (S.4) 

and the aggregate parameters are: 

ψ1 =
1

[1−(1−π).(1−θ)−α1]
    (S.5) 

α1 = α.π + β     (S.6) 

A. (ilt) = go − θ1. (1 + τb). ibt + γt                    (S.7) 

π = τ/(1 + τ)               (S.8) 

where we have the following parameters: α is the accelerator effect through profits, β is the 

exogenous accelerator effect, θ is the income tax rate, θ1 is the interest rate effect on 

investment loans, γ is normalized public spending, τ is the mark-up rate, τb is the bank mark-

up, μ is the dividend-earnings ratio, a is the propensity to consume inherited wealth, δ is the 

percentage of wealth that is allocated to stocks, g0 is entrepreneurial “animal spirits” in the 

investment function. 

By combining the parameters presented above, we arrive at the Keynesian multiplier 

given by (S.5), the parameter that captures both the multiplier effect and the accelerator given 

by (S.6), while the components of aggregate demand that are not sensitive to inherited wealth 

are given by (S.7). The rate of profit on revenue is given by (S.8). 

The endogenous variables are respectively: investment rate, gt; normalized public 

debt, bt; normalized wealth, vht and capacity utilization, ut. The only exogenous variable is the 

interest rate which remunerates government bonds, ib. 

The natural way to reduce the system to two equations is to introduce the equations 

of 𝑢𝑡, given by (S.4) and gt, given by (S.1) in equations (S.2) and (S.3). In this way, we have a 

system formed of two equations and now only depending on lagged and non-current 

variables. These are presented as (S.8) and (S.9) below: 

bt =
bt−1.(1+ibt−1)+γt−θ.[ψ1.A(ilt)+ψ1.a.vht−1]
1+g0+(α.π+β).[ψ1.A(ilt)+ψ1.a.vht−1]−θ1.ilt

       (S.8) 

vht =
[1−(1+τb).(1−μ)].ibt−1.bt−1+μ.(1−θ).π.[ψ1.A(ilt)+ψ1.a.vht−1]+{(1−δ).[1+ibt−1.(1+τb).(1−μ)]−a}.vht−1

1+g0+(α.π+β).[ψ1.A(ilt)+ψ1.a.vht−1]−θ1.ilt−δ
   (S.9) 

However, in order to facilitate the calculations for the following steps, we aggregate 

the parameters. Thus, (S.8) and (S.9) can be simplified as (S.10) and (S.11) below: 

bt =
bt−1.z1+z2−z3.vht−1

z4+z5.vht−1
     (S.10) 

vht =
s2+s1.bt−1+s5.vht−1
z4+z5.vht−1−δ

      (S.11) 
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where the simplified parameters are described in Table 1 below. 

 Table 1- Simplified Parameters for the Benchmark Model 

Simplified Parameter Equals 

z1 (1 + ibt−1) 
z2 γt − θ. ψ1. A(ilt) 
z3 θ. ψ1. a 
z4 1 + g0 + (α. π + β).ψ1. A(ilt) − θ1. ilt 

z5 (α. π + β). ψ1. a 
s1 [1 − (1 + τb). (1 − μ)]. ibt−1 

s2 μ. (1 − θ). π. ψ1. A(ilt) 
s3 μ. (1 − θ). π. ψ1. a 

s4 (1 − δ). [1 + ibt−1. (1 + τb). (1 − μ)] − a 

s5 s3 + s4 

 

Knowing that in the steady state we have b* and vh* as fixed points, which we have 

through (S.10) and (S.11), we have the following equations (S.12) and (S.13) which define 

them: 

b∗ = b∗.z1+z2−z3.vh∗

z4+z5.vh∗
                  (S.12) 

vh∗ = s2+s1.b∗+s5.vh∗

z4+z5.vh∗−δ
        (S.13) 

Rearranging the terms in (S.12) and (S.13), after some algebraic operations, 

substituting one equation for another and after some parameter aggregation, we have the 

polynomial which, if solved, gives us the roots and thus the values of the fixed points for a 

set of parameters. One detail worth noting is that we are facing a polynomial of degree three. 

In the fundamental theorem of algebra there are as many roots as the polynomial degree; 

there are therefore three possible roots. 

v1. vh∗
3 + v2. vh∗

2 + v3. vh∗ − v4 = 0       (S.14) 

Table 2 below shows the values of the polynomial parameters. 
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Table 2- Simplified Parameters for the Steady State Polynomial 

Simplified Parameter Equals  

𝑣1 𝑧5. 𝑧5 

𝑣2 [(𝑧4 − 𝛿 − 𝑠5) + (𝑧4 − 𝑧1)]. 𝑧5 

𝑣3 (𝑧4 − 𝑧1). (𝑧4 − 𝛿 − 𝑠5) − 𝑠2. 𝑧5 + 𝑠1. 𝑧3 

𝑣4 (𝑧4 − 𝑧1). 𝑠2 + 𝑠1. 𝑧2 

 

Rearranging S.12 and taking the inverse function of (S.13), we have: 

b∗ =
z2 − z3. vh∗

(z4 + z5. vh∗ − z1)
     e     f(vh∗)−1 =

z5. vh∗
2 − (δ + s5 − z4). vh∗ − s2

s1
 

Through the above two equations and from (S.14) we can plot two graphs that show 

us that it is possible to find the three roots (if real) for a given set of parameters in the 

crossing curves (left quadrant) or the zero axis (right quadrant). 

Figure 2- Polinomial Roots 

 
Source: Author’s own. Note: (1) Roots are marked by purple circles 

The importance of finding the roots and, consequently, the fixed-point values for b 

and 𝑣ℎ relates to the way in which the stability of a nonlinear discrete-time system of 

equations is analyzed. As presented in Section 1.4, we need to evaluate the Jacobian matrix 

for the values found at the fixed point. Once we have these, all the matrix’s eigenvalues are 

calculated. The sufficient condition for the system’s general stability is achieved when all the 
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eigenvalues have modules less than one (if real) and when the square root of the sum of parts 

a and b is less than one. The system’s Jacobian matrix at the fixed point is denoted by: 

𝐉(b∗, vh∗) = [
( ∂vh
∂b−1

)
(b∗,vh∗)

( ∂vh
∂vh−1

)
(b∗,vh∗)

( ∂b
∂b−1

)
(b∗,vh∗)

( ∂b
∂vh−1

)
(b∗,vh∗)

]       (S.15) 

and through equations (S.10), (S.11), (S.12) and (S.13), we can calculate it in (S.16): 

J(b∗, vh∗) = (
( z1
z4+z5.vh∗

) − [ z3
z4+z5.vh∗

+ z5.(z2+z1.b∗−z3.vh∗)
(z4+z5.vh∗)2

]

( s1
z4−δ+z5.vh∗

) [ s5
z4−δ+z5.vh∗

− z5.(s2+s1.b∗+s5.vh∗)
(z4−δ+z5.vh∗)2

]
)  (S.16) 

In this way, once we have the parameters, we can calculate the fixed points and 

eigenvalues for the Jacobian matrix over the fixed points. The roots of (S.14) can be 

numerically evaluated using the roots.m function in MATLAB9.  

The economic plausibility criteria for the simulations were as follows: 

0 < u∗, g∗ < 1                 (First Condition) 

0 < vh∗, b∗ < 10              (Second Condition) 

Δb, Δvh, Δu, Δg < 10−15      (Third Condition) 

The intuition for each of the three conditions is as follows: first, that both capacity 

utilization and investment rate are between zero and one hundred percent. The restriction 

of the former is a logical consequence of a Kaleckian-inspired model, which, by definition, 

uses some degree of idle capacity in a steady state (either to absorb an unexpected growth in 

demand or to create a barrier mechanism for the entry of new competitors), while the latter 

is simply to prevent the investment rate from being absurdly high. 

Subsequently, according to the second condition, both normalized wealth and 

normalized public debt fall within a range between zero and ten. The idea is to create a ceiling 

to ensure that these sources of wealth and debt do not exceed the economy’s fixed capital 

by more than ten.  

Finally, the third condition determines that the state variables must be convergent in 

the steady state. Since the cut-off time to stop the algorithm is defined ad-hoc, the convergence 

process is defined as true if the variation is less than 10−15. Of course, higher values may be 

used, depending on author preference. 

 
9 According to Grasselli and Pelinovsky (2008), in order to find the roots of a polynomial, the existing algorithm 
in “roots.m” is based on the calculation of the eigenvalues of the companion matrix. This algorithm may be of 
low accuracy for high degree polynomials (from 8). However, it is the most appropriate numerical method for 
this case, since Newton-Raphson does not guarantee convergence if the initial kick is not close to the roots. 
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6. Results 

In order to compare the results from the two methods, the same random seed was 

used to generate the M1 and M2 parameters. The experiment can be controlled through this 

equal generation of parameters, which is why the same set of parameters was used for both 

methods. 

Briefly, for M1, a programming routine was created in MATLAB software to generate 

the set of parameters, calculate the fixed points, evaluate the Jacobian matrix at the fixed 

points and, finally, calculate the respective eigenvalues. Parameters for which there was a 

fixed point with eigenvalue modules below one were filtered. For M2, a programming routine 

was created in the same language (MATLAB) through which the parameters were generated, 

the model was solved via Gauss-Seidel, the last values were stored for a previously-defined 

time horizon and, finally, those where the variations were equal to zero were filtered. 

Figure 2 below presents the scatter plots in two quadrants, one for each method. The 

number of random generated sets was 106. 

Figure 3- Scatter plots for 𝒗𝒉∗ and 𝒃∗ using M1 and M2 

Source: Author’s own. 



 

203 

BRAZILIAN KEYNESIAN REVIEW, 8(2), p.184-208, 2nd Semester/2022 

 

The upper quadrant shows the results obtained applying M1 to the sets of stable 

points, filtered for the ordered pair of roots, with the vh* variable on the horizontal axis, and 

the b* on the vertical one. 

The lower quadrant presents the results obtained using M2 for the final values of the 

vh and b variables in the last simulation period. The first noteworthy point is that, between 

the economically plausible intervals (the positive quadrant for both variables), there is an 

overlap of the areas where the M1 and M2 points meet. This provides the first clue that we 

are, in fact, dealing with methods that present convergent results. 

Nevertheless, to present the probability density distribution (PDF) of the parameters 

for which the model is stable, a Kernel density function (non-parametric method) was 

applied to assess whether an overlap of curves would occur. The results are shown in Figure 

3 below. We note that the two methods present estimated curves with similar results (which 

can be visualized in their superposition10). 

The highlight here is that the main difference between the two methods only 

occurred in cases where the M1 had a fixed point with three eigenvalue modules below one 

and when the M2 variations did not converge to zero. This occurred in just 0.145% of the 

cases; we explored all these in order to understand what was taking place. What we found 

was that this occurred with stable focus points, that is, there was spiral convergence to the 

fixed point, but this was due to oscillatory behavior. 

  

 
10 When the approach is parametric, statistical tests can be performed to compare whether the distribution 
differs statically. However, we do not know of a nonparametric method capable of doing this.  
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Figure 4- Kernel density estimation for the stable parameters 

 

Source: Author’s own. Key: (1) Method 1 in blue; (2) Method 2 in magenta. 

Other cases of non-convergence were found in which the variation was very low, but 

the eigenvalues did not have a module less than one. These findings were either due to limit 

cycle behavior or unstable focus (with the latter more likely). 
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Figure 5- Convergence through negative values 

 
Source: Author’s own. 

Another point worth mentioning is that the algorithm we designed seeks 

convergence to the equilibrium point, without restricting the mode of convergence. There is 

no limitation on the values that the variables can obtain during convergence. During this 

process it is therefore possible for the variables to assume negative values, which is a 

mathematical possibility, but not an economic one. From an economic point of view, one 

can reasonably expect that the path between the initial and final points occurs in the strictly 

positive quadrant, since wealth and public debt normalized by capital stock are necessarily 

positive. However, since the algorithm filter only takes place at the end point, it is possible 

for such cases to appear. 

The only way to verify whether the chosen parameter set does not display this type 

of behavior is to verify it case by case. Figure 5 illustrates a typical convergence case where 

this occurs. 

However, given that there are few cases in which the M2 algorithm did not obtain 

similar results to M1 (less than 1%), the alternative created by the former serves as a new 

resource for calibrating empirical SFC models, since it is not always easy to obtain data or 

determine the appropriate econometric technique to calibrate empirical models. As 

mentioned above, there are certain requirements for this: the model must be able to reach 

the steady-state or a balanced growth path; and typically the model should not be one that 
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easily contains the periodic orbits that occur in nonlinear dynamics systems (such as the prey-

predator model). 

7. Conclusion 

Most SFC models can be described as systems of difference equations. The 

traditional approach to finding steady-state solutions in difference equation systems involves 

first identifying whether the system is linear or nonlinear, and then mapping the fixed points. 

If the system is linear, the analysis is straightforward, calculating the eigenvalues of the main 

matrix of coefficients. If it is nonlinear, the system must be linearized and evaluated for the 

eigenvalues around the steady-state point. However, systems in SFC modeling can become 

so large as to make traditional stability analysis unfeasible. Given this, the method proposed 

in this article innovates by offering an alternative approach. 

Thus, we developed an algorithm that combines three numerical techniques to map 

a model’s stable parameters. First, a domain is defined for generating random parameter 

values via Monte Carlo simulation. Next, for each set of generated values, the model is solved 

and the final values for the system-level variables, and their last period variations, are stored. 

Finally, the parameters for which there is no more final period variation are separated out, 

so that the final variables fall within the economically plausible quadrant. 

In order to compare the original technique and our alternative one, we applied both 

techniques, in parallel, to map the stable parameters of the model proposed by Dos Santos 

and Zezza, widely known in the literature as the “Simplified Benchmark”. Our results show 

convergence in the values obtained by the two techniques when using the non-parametric 

method of Kernel density. In this way, this work constitutes progress, by providing an escape 

route for understanding and mapping parameters which may be unfeasible or impossible to 

map through the traditional method, because the models are too large. 

To conclude, we believe that the paper’s innovation resides precisely in its 

demonstration that a relatively simple alternative algorithm maintains equivalence with the 

local stability analysis routinely performed in post-Keynesian macrodynamic models. 

However, as is repeatedly stated in the literature on economic dynamics, models with a 

dimension greater than four present a great deal of difficulty for this type of analysis, whether 

in continuous or discrete time models. The escape route provided to overcome this difficulty 

allowed us to map the parameters of an SFC model that make it stable, even when it is high-

dimensional. 
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Furthermore, one could use the same algorithm to investigate parameters that 

generate different growth and capital accumulation regimes, or even restrict them, in order 

to find observable values that resemble those of a country’s real economy. 
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