Keywords: capital accumulation, life cycle, PAYG, Retirement


The central objective of this paper is to deliver an intergenerational Life Cycle model considering the retirement process based on the pay-as-you-go system (PAYG). Our model is inspired by Baranzinis’ approach, where the optimal consumption analysis is made in a two-class type and restricted by the capital variation of each one. Our main results observe the equilibrium solution of the consumption and capital stock to both classes and conclude that the PAYG system does interfere with the results, as well as the time preference to leave or not inheritance. The methodology approached here is the Pontryagins’ Maximum Principle. We also applied a numerical simulation to ensure the robustness of our approach.


Download data is not yet available.


Acemoglu, D. (2009), Growth with overlapping generations. In: Introduction to Modern Economic Growth, New Jersey: Princeton University Press: 327-358.

Balestra, P.; Baranzini, M. (1971), Some optimal aspects in a two class growth model with a differentiated interest rate, Kyklos, 24(2): 240-256. DOI: https://doi.org/10.1111/j.1467-6435.1971.tb00808.x

Baranzini, M. (1991), A theory of wealth distribution and accumulation (1st ed). New York: Oxford University Press.

Baranzini, M.; Benjuino, S. O.; Teixeira, J. R. (2003), Taxation on Intergenerational Bequest and Redistribution of Wealth in a Class-Setting. Texto para discussão, n. 279. Brasília: Departamento de Economia, Universidade de Brasília.

Blecker, R.; Setterfield, M. (2019), Introduction: competing theories of production, growth and distribution. In: Heterodox Macroeconomics, Massachusetts: Edward Elgar Publishing Limited: 1-56.

Dorfman, R. (1969), An economic interpretation of optimal control theory. The American Economic Review, 59(5): 817-831. DOI: https://www.jstor.org/stable/1810679

Drèze, J.; Khera, R. (2017), Recent social security initiatives in India. World Development, 98: 555-572. DOI: https://doi.org/10.1016/j.worlddev.2017.05.035

Ellery Junior, R. D. G.; Bugarin, M. N. (2003), Previdência social e bem estar no Brasil. Revista Brasileira de Economia, 57(1): 27-57. DOI: https://doi.org/10.1590/S0034-71402003000100002

Feldstein, M. (1976), Social security and saving: The extended life cycle theory. The American Economic Review, 66(2): 77-86. DOI: https://www.jstor.org/stable/1817202

Feldstein, M. (1978), Do private pensions increase national savings?. Journal of Public Economics, 10(3): 277-293. DOI: https://doi.org/10.1016/0047-2727(78)90049-X

Foley, D. K.; Michl, T. R. (1999), Government debt and social security: the overlapping generations model. In: Growth and distribution, Cambridge: Harvard University Press, 225-255.

Gertler, M. (1999), Government debt and social security in a life-cycle economy. Carnegie-Rochester Conference Series on Public Policy, 50(1): 61-110. DOI: https://doi.org/10.1016/S0167-2231(99)00022-6

Góes, G. S.; Teixeira, J. R. (2022), Growth and income distribution: The heritage effect on the capital accumulation process. Structural Change and Economic Dynamics, 61: 458-462. DOI: https://doi.org/10.1016/j.strueco.2020.03.009

Harrod, R. F. (1948), Towards a Dynamic Economics: Some recent developments of economic theory and their application to policy. London: MacMillan and Company.

Heijdra, B. J. (2002), Foundations of modern macroeconomics. New York: Oxford university press.

Hicks, A. (1999), Social democracy and welfare capitalism. New York: Cornell University Press.

Holland, M.; Malaga B., G. R. T. (2018), Previdência social no Brasil: propostas para uma reforma de longo prazo. Texto para discussão, n. 487, 29p.

Kaldor, N. (1955), Alternative theories of distribution. The review of economic studies, 23(2): 83-100. DOI: http://www.jstor.org/stable/2296292?origin=JSTOR-pdf

Keynes, J. M. (1936), The general theory of employment, interest, and money. Londres: Palgrave Macmillan.

Lavinas, L. (2018), The collateralization of social policy under financialized capitalism. Development and Change, 49(2): 502-517. DOI: https://doi.org/10.1111/dech.12370

Lavoie, M. (2014), Essential of heterodox and post-Keynesian economics. In: Post-Keynesian Economics: New Foundations, Massachusetts: Edward Elgar Publishing Limited: 1-71.

Leonard, D., Van Long, N.; Ngo, V. L. (1992), Optimal control theory and static optimization in economics. Cambridge: Cambridge University Press.

Miller, J. (2020), Resuscitating Private Social Security Accounts: Countering Inequality with Panic and Prevarication. NEW SOLUTIONS: A Journal of Environmental and Occupational Health Policy, 30(1): 52-56. DOI: https://doi.org/10.1177/1048291120905081

Modigliani, F.; Brumberg, R. (1954), Utility analysis and the consumption function: An interpretation of cross-section data. In: Post-Keynesian economics, London: Allen and Unwin, 388-436.

Nell, E. J. (2013), Reinventing Macroeconomics: What are the Questions?. In: HARCOURT, G. C.; KRIESLER, Peter. The Oxford Handbook of Post-Keynesian Economics, Volume 1: Theory and Origins (1. ed.). Oxford: Oxford handbooks online: 1-19.

Nogueira Silva, D.; Morrone, H.; Kappes, S. (2021), Assessing pension system outcomes in Brazil: a stock-flow consistent analysis. Brazilian Keynesian Review, 7(2): 243-271. DOI: https://doi.org/10.33834/bkr.v7i2.249

Pasinetti, L. L. (1962), Rate of profit and income distribution in relation to the rate of economic growth. In: Readings in the Theory of Growth. London: Palgrave Macmillan: 184-196.

Pasinetti, L. L. (2012), A few counter-factual hypotheses on the current economic crisis. Cambridge Journal of Economics, 36(6): 1433-1453. DOI: https://www.jstor.org/stable/24232474

Pontryagin, L. S. (1987), Mathematical theory of optimal processes. Florida: CRC press.

Portella, A. A.; de Souza, B. C. N. (2021), A nova ofensiva ao sistema previdenciário brasileiro: um paralelo com o modelo privatista chileno. Revista Direito, Estado e Sociedade, 58: 14-41. DOI: https://doi.org/10.17808/des.0.1192

Rust, J.; Phelan, C. (1997), How Social Security and Medicare Affect Retirement Behavior In: a World of Incomplete Markets. Econometrica, 65(4): 781-831. DOI: https://doi.org/10.2307/2171940

Steedman, I. (1972), The state and the outcome of the Pasinetti process. The Economic Journal, 82(328): 1387-1395. DOI: https://doi.org/10.2307/2231318

Sugahara, R. N.; Aragón, E. K. S. B.; da Cunha, M. S.; Perdigão C. (2016), Effects of the taxation on inheritance in a microfounded model of growth and post-Keynesian distribution with overlapping generations and life cycle. EconomiA, 17(3): 340-350. DOI: https://doi.org/10.1016/j.econ.2016.09.002

Teixeira, J. R., Suguhara, R. N., and Baranzini, M. (2002), On micro-foundations of the Kaldor-Pasinetti growth model with taxation on bequest. Brazilian Journal of Business Economics, 2(1): 9-23.

Turgot, A. R. J. (1793), Reflections on the Formation and Distribution of Wealt. London: E. Spragg.

Walras, L. (1874), Éléments d'économie politique pure, ou, Théorie de la richesse sociale. London: Forgotten Books

Wei, H. C. C.; Araújo, R. S. A. (2009), A post keynesian model of growth and wealth distribution: government's optimal tax choice using an intertemporal infinitely representative agent. Revista de Economia Mackenzie, 7(1): 9-29.

Wolff, E. (1988), Life cycle savings and the individual distribution of wealth by class. In: Modelling the accumulation and distribution of wealth, New York: Clarendon Press: 261-280.

How to Cite
Estulano Vieira, B., de Araujo Oliveira, J. G., & Nozaki Sugahara, R. (2023). A LIFE-CYCLE INTERGENERATIONAL MODEL CONSIDERING SOCIAL SECURITY. Brazilian Keynesian Review, 9(1), 128-157. https://doi.org/10.33834/bkr.v9i1.286